Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging.

نویسندگان

  • Amaan Mazhar
  • David J Cuccia
  • Sylvain Gioux
  • Anthony J Durkin
  • John V Frangioni
  • Bruce J Tromberg
چکیده

We introduce a noncontact imaging method utilizing multifrequency structured illumination for improving lateral and axial resolution and contrast of fluorescent molecular probes in thick, multiple-scattering tissue phantoms. The method can be implemented rapidly using a spatial light modulator and a simple image demodulation scheme similar to structured light microscopy in the diffraction regime. However, imaging is performed in the multiple-scattering regime utilizing spatially modulated scalar photon density waves. We demonstrate that by increasing the structured light spatial frequency, fluorescence from deeper structures is suppressed and signals from more superficial objects enhanced. By measuring the spatial frequency dependence of fluorescence, background can be reduced by localizing the signal to a buried fluorescent object. Overall, signal-to-background ratio (SBR) and resolution improvements are dependent on spatial frequency and object depth/dimension with as much as sevenfold improvement in SBR and 33% improvement in resolution for approximately 1-mm objects buried 3 mm below the surface in tissue-like media with fluorescent background.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence endomicroscopy with structured illumination.

We present an endomicroscope apparatus that utilizes structured illumination to produce high resolution (approximately 2.6 microm) optically sectioned fluorescence images over a field of view of about 240 microm. The endomicroscope is based on the use of a flexible imaging fiber bundle with a miniaturized objective. We also present a strategy to largely suppress structured illumination artifact...

متن کامل

Optimization of a Widefield Structured Illumination Microscope for Non-Destructive Assessment and Quantification of Nuclear Features in Tumor Margins of a Primary Mouse Model of Sarcoma

Cancer is associated with specific cellular morphological changes, such as increased nuclear size and crowding from rapidly proliferating cells. In situ tissue imaging using fluorescent stains may be useful for intraoperative detection of residual cancer in surgical tumor margins. We developed a widefield fluorescence structured illumination microscope (SIM) system with a single-shot FOV of 2.1...

متن کامل

Simultaneous optically sectioned fluorescence and optical coherence microscopy with full-field illumination.

Full-field optical coherence microscopy (FF-OCM) and optically sectioned fluorescence microscopy are two imaging techniques that are implemented here in a novel dual modality instrument. The two imaging modalities use a broad field illumination to acquire the entire field of view without raster scanning. Optical sectioning is achie...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue.

Multifocal structured illumination microscopy (MSIM) provides a twofold resolution enhancement beyond the diffraction limit at sample depths up to 50 µm, but scattered and out-of-focus light in thick samples degrades MSIM performance. Here we implement MSIM with a microlens array to enable efficient two-photon excitation. Two-photon MSIM gives resolution-doubled images with better sectioning an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2010